Fig. 4

Variation with pressure of the time required to obtain the standard $\theta^{\prime \prime}$ result.
where $\bar{x}^{2}=$ mean square distance travelled by an atom in time t. Hence, if \bar{x}^{2} is a constant, as is assumed in the present experiments :

$$
D=\frac{\alpha}{t},
$$

where α is a constant. Thus

$$
\ln t=\frac{P \Delta V}{R T^{\prime}}+\frac{\Delta U}{R T}+\ln \frac{\alpha}{D_{0}} .
$$

Thus at constant T and if D_{0} and ΔV are independent of pressure, then the slope of $\ln t$ versus P will have a gradient of $\Delta V / R T$. From fig. 4 an activation volume ΔV for the diffusion process in the formation of $\theta^{\prime \prime}$ precipitates
of $12 \cdot 4 \pm 0 \cdot 4 \mathrm{~cm}^{3} \mathrm{~mole}^{-1}$ is obtained. This can be compared with $10.02 \mathrm{~cm}^{3} \mathrm{~mole}^{-1}$,
which is the molar volume of aluminium. In work on the effect of pressure on self-diffusion, D_{0} is not independent of pressure but the correction to the activation volume due to this factor is less than 10%. For instance, Beyeler and Adda (1968) found that the uncorrected activation volume for vacancies

Fig. 5

Variation with temperature of the time required to obtain the standard $\theta^{\prime \prime}$ result.
in aluminium was $12.5 \mathrm{~cm}^{3}$ mole $^{-1}$, and when the correction for the variation of D_{0} with pressure was made, the activation volume became $12 \cdot 9 \mathrm{~cm}^{3} \mathrm{~mole}^{-1}$, a correction of less than 4%.
To obtain the apparent activation energy for the formation of the $\theta^{\prime \prime}$ precipitates, specimens were homogenized at $540^{\circ} \mathrm{C}$, quenched to $0^{\circ} \mathrm{C}$, aged at room temperature for 24 hr and then further aged at temperatures in

